This page lists references for the report.

  1.  Joshi I, Morley J. Artificial Intelligence: How to get it right. Putting policy into practice for safe data-driven innovation in health and care. 2019:1-55. https://www.nhsx.nhs.uk/ai-lab/explore-all-resources/understand-ai/artificial-intelligence-how-get-it-right. Accessed February 28, 2022.
  2. Hardie T, Horton T, Willis M, Warburton W. Switched on. How Do We Get the Best out of Automation and AI in Health Care? 2021. doi:10.37829/HF-2021-I03
  3. AI Roadmap report and interactive dashboard - Health Education England. https://www.hee.nhs.uk/our-work/dart-ed/ai-roadmap. Accessed February 28, 2022.
  4. Spiegelhalter D. Should We Trust Algorithms? Harvard Data Sci Rev. January 2020:1-12. doi:10.1162/99608f92.cb91a35a
  5. Topol E. The Topol Review: Preparing the Healthcare Workforce to Deliver the Digital Future. 2019. https://topol.hee.nhs.uk/the-topol-review/. Accessed February 28, 2022.
  6. NHS. NHS Long Term Plan: Digital transformation. NHS England. https://www.longtermplan.nhs.uk/areas-of-work/digital-transformation/. Published 2019. Accessed February 28, 2022.
  7. National AI Strategy - GOV.UK. https://www.gov.uk/government/publications/national-ai-strategy. Accessed February 28, 2022.
  8. The National Strategy for AI in Health and Social Care - NHS AI Lab programmes - NHS Transformation Directorate. https://www.nhsx.nhs.uk/ai-lab/ai-lab-programmes/the-national-strategy-for-ai-in-health-and-social-care/. Accessed February 28, 2022.
  9. Sinha S, Al Huraimel K. Transforming Healthcare with AI. In: Reimagining Businesses with AI; 2020:33-54. doi:10.1002/9781119709183.ch3
  10. Liu X, Keane PA, Denniston AK. Time to regenerate: the doctor in the age of artificial intelligence. J R Soc Med. 2018;111(4):113-116. doi:10.1177/0141076818762648
  11. How to build trust with Trusts on artificial intelligence - Med-Tech Innovation. https://www.med-technews.com/medtech-insights/ai-in-healthcare-insights/how-to-build-trust-with-trusts-on-artificial-intelligence_1/. Accessed February 28, 2022.
  12. Leslie D. Understanding artificial intelligence ethics and safety. 2019. doi:10.5281/zenodo.3240529
  13. Parikh RB, Teeple S, Navathe AS. Addressing Bias in Artificial Intelligence in Health Care. JAMA - J Am Med Assoc. 2019;322(24):2377-2378. doi:10.1001/jama.2019.18058
  14. Leslie D, Mazumder A, Peppin A, Wolters MK, Hagerty A. Does “AI” stand for augmenting inequality in the era of covid-19 healthcare? BMJ. 2021;372. doi:10.1136/bmj.n304
  15. UK to pilot world-leading approach to improve ethical adoption of AI in healthcare. GOV.UK. https://www.gov.uk/government/news/uk-to-pilot-world-leading-approach-to-improve-ethical-adoption-of-ai-in-healthcare. Accessed March 8, 2022.
  16. The multi-agency advice service (MAAS) (now know as the AI and Digital Regulations Service) - Regulating the AI ecosystem - NHS Transformation Directorate. https://www.nhsx.nhs.uk/ai-lab/ai-lab-programmes/regulating-the-ai-ecosystem/the-multi-agency-advice-service-maas/. Accessed March 7, 2022.
  17. Digital Technology Assessment Criteria (DTAC) - Key tools and information - NHS Transformation Directorate. https://www.nhsx.nhs.uk/key-tools-and-info/digital-technology-assessment-criteria-dtac/. Accessed March 7, 2022.
  18. MHRA. Software and AI as a Medical Device Change Programme. https://www.gov.uk/government/publications/software-and-ai-as-a-medical-device-change-programme/software-and-ai-as-a-medical-device-change-programme. Published 2021. Accessed March 7, 2022.
  19. HM Government. Designated standards: medical devices - GOV.UK. https://www.gov.uk/government/publications/designated-standards-medical-devices. Accessed March 7, 2022.
  20. NHS digital, data and technology standards - NHS Digital. https://digital.nhs.uk/about-nhs-digital/our-work/nhs-digital-data-and-technology-standards. Accessed March 7, 2022.
  21. IMDRF. International Medical Device Regulators Forum - Software as a Medical Device (SaMD): Key Definitions. 2013. https://www.imdrf.org/documents/software-medical-device-samd-key-definitions. Accessed March 7, 2022.
  22. CQC. The five key questions we ask - Care Quality Commission. Care Quality Commission. https://www.cqc.org.uk/what-we-do/how-we-do-our-job/five-key-questions-we-ask. Published 2016. Accessed March 7, 2022.
  23. CQC. What we do - Care Quality Commission. https://www.cqc.org.uk/what-we-do. Published 2019. Accessed March 7, 2022.
  24. Richardson JP, Smith C, Curtis S, et al. Patient apprehensions about the use of artificial intelligence in healthcare. npj Digit Med. 2021;4(1). doi:10.1038/s41746-021-00509-1
  25. Wall E, Stasko J, Endert A. Toward a Design Space for Mitigating Cognitive Bias in Vis. 2019 IEEE Vis Conf VIS 2019. 2019:111-115. doi:10.1109/VISUAL.2019.8933611
  26. Anwar R. Good medical practice. BMJ. 2003;327(7425):1213. doi:10.1136/bmj.327.7425.1213
  27. Smith H. Clinical AI: opacity, accountability, responsibility and liability. AI Soc. 2021;36(2):535-545. doi:10.1007/S00146-020-01019-6/FIGURES/1
  28. Hwang EJ, Park S, Jin KN, et al. Development and Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs. JAMA Netw open. 2019;2(3):e191095. doi:10.1001/jamanetworkopen.2019.1095
  29. Beede E, Baylor E, Hersch F, et al. A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy. In: Conference on Human Factors in Computing Systems - Proceedings. 2020. doi:10.1145/3313831.3376718
  30. HM Government. The medical devices regulations 2002. 2002;(618):1-40. https://www.legislation.gov.uk/uksi/2002/618/contents/made. Accessed March 7, 2022.
  31. Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies in medical imaging. BMJ. 2020;368. doi:10.1136/bmj.m689
  32. Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Heal. 2019;1(6):e271-e297. doi:10.1016/S2589-7500(19)30123-2
  33. Interim guidance on incorporating artificial intelligence into the NHS Breast Screening Programme. Gov.uk. https://www.gov.uk/government/publications/artificial-intelligence-in-the-nhs-breast-screening-programme/interim-guidance-on-incorporating-artificial-intelligence-into-the-nhs-breast-screening-programme. Published 2021. Accessed March 7, 2022.
  34. Gille F, Jobin A, Ienca M. What we talk about when we talk about trust: Theory of trust for AI in healthcare. Intell Med. 2020;1-2:100001. doi:10.1016/j.ibmed.2020.100001
  35. NICE. Evidence standards framework for digital health technologies. 2019. https://www.nice.org.uk/about/what-we-do/our-programmes/evidence-standards-framework-for-digital-health-technologies. Accessed March 7, 2022.
  36. NICE. NICE META Tool. https://meta.nice.org.uk/. Published 2021. Accessed March 7, 2022.
  37. Collins GS, Dhiman P, Andaur Navarro CL, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021;11(7):e048008. doi:10.1136/bmjopen-2020-048008
  38. Sounderajah V, Ashrafian H, Golub RM, et al. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: The STARD-AI protocol. BMJ Open. 2021;11(6):e047709. doi:10.1136/bmjopen-2020-047709
  39. Rivera SC, Liu X, Chan AW, Denniston AK, Calvert MJ. Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI Extension. BMJ. 2020;370. doi:10.1136/bmj.m3210
  40. Liu X, Cruz Rivera S, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med. 2020;26(9):1364-1374. doi:10.1038/s41591-020-1034-x
  41. Vasey B, Clifton DA, Collins GS, et al. DECIDE-AI: new reporting guidelines to bridge the development-to-implementation gap in clinical artificial intelligence. Nat Med. 2021;27(2):186-187. doi:10.1038/s41591-021-01229-5
  42. Sounderajah V, Ashrafian H, Rose S, et al. A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med. 2021;27(10):1663-1665. doi:10.1038/s41591-021-01517-0
  43. STANDING Together Working Group. STANDING together. 2021. https://www.datadiversity.org/. Accessed March 8, 2022.
  44. González-Gonzalo C, Thee EF, Klaver CCW, et al. Trustworthy AI: Closing the gap between development and integration of AI systems in ophthalmic practice. Prog Retin Eye Res. December 2021:101034. doi:10.1016/j.preteyeres.2021.101034
  45. A buyer’s guide to AI in health care - NHS Transformation Directorate. https://www.nhsx.nhs.uk/ai-lab/explore-all-resources/adopt-ai/a-buyers-guide-to-ai-in-health-and-care/. Accessed March 8, 2022.
  46. CDDO. Algorithmic Transparency Standard. GOV.UK. https://www.gov.uk/government/publications/algorithmic-transparency-data-standard. Published 2021. Accessed March 7, 2022.
  47. Google Cloud Model Cards. https://modelcards.withgoogle.com/about. Accessed March 7, 2022.
  48. Sendak MP, Gao M, Brajer N, Balu S. Presenting machine learning model information to clinical end users with model facts labels. npj Digit Med. 2020;3(1):1-4. doi:10.1038/s41746-020-0253-3
  49. Leslie D. Explaining Decisions Made with AI. SSRN Electron J. 2022. doi:10.2139/ssrn.4033308
  50. A guide to good practice for digital and data-driven health technologies - GOV.UK. https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology. Accessed March 7, 2022.
  51. What Good Looks Like framework - What Good Looks Like - NHS Transformation Directorate. https://www.nhsx.nhs.uk/digitise-connect-transform/what-good-looks-like/what-good-looks-like-publication/. Accessed March 7, 2022.
  52. A guide to using artificial intelligence in the public sector - GOV.UK. https://www.gov.uk/government/publications/a-guide-to-using-artificial-intelligence-in-the-public-sector. Accessed March 7, 2022.
  53. Good Machine Learning Practice for Medical Device Development: Guiding Principles - GOV.UK. https://www.gov.uk/government/publications/good-machine-learning-practice-for-medical-device-development-guiding-principles. Accessed March 7, 2022.
  54. Medical Technologies Evaluation Programme - NICE guidance. https://www.nice.org.uk/about/what-we-do/our-programmes/nice-guidance/nice-medical-technologies-evaluation-programme. Accessed March 7, 2022.
  55. Diagnostics Assessment Programme - NICE guidance - Our programmes. https://www.nice.org.uk/about/what-we-do/our-programmes/nice-guidance/nice-diagnostics-guidance. Accessed March 7, 2022.
  56. HeartFlow FFRCT for estimating fractional flow reserve from coronary CT angiography - Guidance - NICE. https://www.nice.org.uk/guidance/mtg32. Accessed March 7, 2022.
  57. Zio XT for detecting cardiac arrhythmias - Guidance - NICE. https://www.nice.org.uk/guidance/mtg52. Accessed March 7, 2022.
  58. An Innovator’s Guide to the NHS.; 2020. https://www.boehringer-ingelheim.co.uk/sites/gb/files/documents/innovators_guide.pdf. Accessed March 7, 2022.
  59. NICE. Medtech innovation briefings. https://www.nice.org.uk/about/what-we-do/our-programmes/nice-advice/medtech-innovation-briefings. Accessed March 7, 2022.
  60. NICE. The technologies - Artificial intelligence in mammography. https://www.nice.org.uk/advice/mib242/chapter/The-technologies. Accessed March 7, 2022.
  61. Principled Artificial Intelligence - Berkman Klein Center. https://cyber.harvard.edu/publication/2020/principled-ai. Published 2020. Accessed March 7, 2022.
  62. Government Digital Service. Data Ethics Framework - GOV.UK. Government Digital Service. https://www.gov.uk/government/publications/data-ethics-framework/data-ethics-framework-2020. Published 2020. Accessed March 7, 2022.
  63. WHO. Ethics and Governance of Artificial Intelligence for Health: WHO Guidance.; 2021. http://apps.who.int/bookorders. Accessed March 7, 2022.
  64. Hesketh R. Trusted autonomous systems in healthcare A policy landscape review. 2021. doi:10.18742/pub01-062
  65. NHS AI Virtual Hub - NHS Transformation Directorate. https://www.nhsx.nhs.uk/ai-lab/ai-lab-virtual-hub/. Accessed March 8, 2022.
  66. Dermatology digital playbook - Digital playbooks - NHS Transformation Directorate. https://www.nhsx.nhs.uk/key-tools-and-info/digital-playbooks/dermatology-digital-playbook/. Accessed March 7, 2022.
  67. NHS. Interoperability Toolkit - NHS Digital. https://digital.nhs.uk/services/interoperability-toolkit. Published 2021. Accessed March 7, 2022.
  68. Gaube S, Suresh H, Raue M, et al. Do as AI say: susceptibility in deployment of clinical decision-aids. npj Digit Med. 2021;4(1):1-8. doi:10.1038/s41746-021-00385-9
  69. Garcia-Vidal C, Sanjuan G, Puerta-Alcalde P, Moreno-García E, Soriano A. Artificial intelligence to support clinical decision-making processes. EBioMedicine. 2019;46:27-29. doi:10.1016/j.ebiom.2019.07.019
  70. van Baalen S, Boon M, Verhoef P. From clinical decision support to clinical reasoning support systems. J Eval Clin Pract. 2021;27(3):520-528. doi:10.1111/jep.13541
  71. NICE. NICE guidelines. PSA testing | Diagnosis | Prostate cancer | CKS |. https://cks.nice.org.uk/topics/prostate-cancer/diagnosis/psa-testing/. Published 2017. Accessed February 28, 2022.
  72. Saraiya M, Kottiri BJ, Leadbetter S, et al. Total and percent free prostate-specific antigen levels among U.S. men, 2001-2002. Cancer Epidemiol Biomarkers Prev. 2005;14(9):2178-2182. doi:10.1158/1055-9965.EPI-05-0206
  73. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):1-9. doi:10.1186/s12916-019-1426-2
  74. Magrabi F, Ammenwerth E, McNair JB, et al. Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications. Yearb Med Inform. 2019;28(1):128-134. doi:10.1055/s-0039-1677903
  75. Myers PD, Ng K, Severson K, et al. Identifying unreliable predictions in clinical risk models. npj Digit Med. 2020;3(1):1-8. doi:10.1038/s41746-019-0209-7
  76. Benda NC, Novak LL, Reale C, Ancker JS. Trust in AI: why we should be designing for APPROPRIATE reliance. J Am Med Inform Assoc. 2021;29(1):207-212. doi:10.1093/jamia/ocab238
  77. Shen J, Zhang CJP, Jiang B, et al. Artificial intelligence versus clinicians in disease diagnosis: Systematic review. JMIR Med Informatics. 2019;7(3):e10010. doi:10.2196/10010
  78. Lee MH, Siewiorek DP, Smailagic A. A human-ai collaborative approach for clinical decision making on rehabilitation assessment. Conf Hum Factors Comput Syst - Proc. 2021;(Figure 1). doi:10.1145/3411764.3445472
  79. Asan O, Bayrak AE, Choudhury A. Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians. J Med Internet Res. 2020;22(6):e15154. doi:10.2196/15154
  80. Petkus H, Hoogewerf J, Wyatt JC. What do senior physicians think about AI and clinical decision support systems: Quantitative and qualitative analysis of data from specialty societies. Clin Med J R Coll Physicians London. 2020;20(3):324-328. doi:10.7861/clinmed.2019-0317
  81. Westbrook JI, Raban MZ, Walter SR, Douglas H. Task errors by emergency physicians are associated with interruptions, multitasking, fatigue and working memory capacity: A prospective, direct observation study. BMJ Qual Saf. 2018;27(8):655-663. doi:10.1136/bmjqs-2017-007333
  82. Larasati R, Liddo A De, Motta E. AI Healthcare System Interface: Explanation Design for Non-Expert User Trust. CEUR Workshop Proc. 2021;2903.
  83. Macrae C. Governing the safety of artificial intelligence in healthcare. BMJ Qual Saf. 2019;28(6):495-498. doi:10.1136/bmjqs-2019-009484
  84. Blease C, Bernstein MH, Gaab J, et al. Computerization and the future of primary care: A survey of general practitioners in the UK. PLoS One. 2018;13(12):e0207418. doi:10.1371/journal.pone.0207418
  85. PWC. What doctor? What Dr. 2017;(June):1-50. http://medicalfuturist.com/. Accessed February 28, 2022.
  86. Mori I. Public views of Machine Learning Findings from public research and engagement. 2017;(April). http://www.ipsos-mori.com/terms. Accessed February 28, 2022.
  87. Holm S. Handle with care: Assessing performance measures of medical AI for shared clinical decision-making. Bioethics. 2022;36(2):178-186. doi:10.1111/bioe.12930
  88. Bond RR, Mulvenna M, Wang H. Human centered artificial intelligence: Weaving UX into algorithmic decision making. RoCHI 2019 Int Conf Human-Computer Interact. 2019:2-9. https://hai.stanford.edu. Accessed March 8, 2022.
  89. Buçinca Z, Malaya MB, Gajos KZ. To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in AI-assisted Decision-making. 2021;5(April). doi:10.1145/3449287
  90. Cai CJ, Winter S, Steiner D, Wilcox L, Terry M. “Hello AI”: Uncovering the onboarding needs of medical practitioners for human–AI collaborative decision-making. Proc ACM Human-Computer Interact. 2019;3(CSCW). doi:10.1145/3359206
  91. Chari S, Seneviratne O, Gruen DM, Foreman MA, Das AK, McGuinness DL. Explanation Ontology: A Model of Explanations for User-Centered AI. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 12507 LNCS. Springer Science and Business Media Deutschland GmbH; 2020:228-243. doi:10.1007/978-3-030-62466-8_15
  92. Guo C, Pleiss G, Sun Y, Weinberger KQ. On calibration of modern neural networks. In: 34th International Conference on Machine Learning, ICML 2017. Vol 3. ; 2017:2130-2143.
  93. Zhang Y, Vera Liao Q, Bellamy RKE. Efect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making. In: FAT* 2020 - Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. ; 2020:295-305. doi:10.1145/3351095.3372852
  94. Cutillo CM, Sharma KR, Foschini L, et al. Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency. npj Digit Med. 2020;3(1):1-5. doi:10.1038/s41746-020-0254-2
  95. Watson D. The Rhetoric and Reality of Anthropomorphism in Artificial Intelligence. Minds Mach. 2019;29(3):417-440. doi:10.1007/s11023-019-09506-6
  96. Winkler JK, Fink C, Toberer F, et al. Association between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition. JAMA Dermatology. 2019;155(10):1135-1141. doi:10.1001/jamadermatol.2019.1735
  97. Tjoa E, Guan C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Trans Neural Networks Learn Syst. 2021;32(11):4793-4813. doi:10.1109/TNNLS.2020.3027314
  98. Jin W, Li X, Hamarneh G. One Map Does Not Fit All: Evaluating Saliency Map Explanation on Multi-Modal Medical Images. July 2021. https://arxiv.org/abs/2107.05047v1. Accessed February 28, 2022.
  99. Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B. Sanity checks for saliency maps. In: Advances in Neural Information Processing Systems. Vol 2018-Decem. Neural information processing systems foundation; 2018:9505-9515. https://arxiv.org/abs/1810.03292v3. Accessed February 28, 2022.
  100. Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit Heal. 2021;3(11):e745-e750. doi:10.1016/s2589-7500(21)00208-9
  101. Babic BB, Gerke S, Evgeniou T, Glenn Cohen I. Beware explanations from AI in health care the benefits of explainable artificial intelligence are not what they appear. Science. 2021;373(6552):284-286. doi:10.1126/science.abg1834
  102. Chen C, Li O, Tao C, Barnett AJ, Su J, Rudin C. This looks like that: Deep learning for interpretable image recognition. In: Advances in Neural Information Processing Systems. Vol 32. Neural information processing systems foundation; 2019. https://arxiv.org/abs/1806.10574v5. Accessed February 28, 2022.
  103. Yu KH, Kohane IS. Framing the challenges of artificial intelligence in medicine. BMJ Qual Saf. 2019;28(3):238-241. doi:10.1136/bmjqs-2018-008551
  104. Cho MK. Rising to the challenge of bias in health care AI. Nat Med. 2021;27(12):2079-2081. doi:10.1038/s41591-021-01577-2
  105. Zou J, Schiebinger L. Ensuring that biomedical AI benefits diverse populations. EBioMedicine. 2021;67. doi:10.1016/j.ebiom.2021.103358
  106. Center for data ethics and innovation. Review into bias in algorithmic decision-making Centre for Data Ethics and Innovation. 2020
  107. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447-453. doi:10.1126/science.aax2342
  108. Henry Kamulegeya L, Okello M, Mark Bwanika J, et al. Using artificial intelligence on dermatology conditions in Uganda: A case for diversity in training data sets for machine learning. bioRxiv. October 2019:826057. doi:10.1101/826057
  109. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. BMJ. 2020;369:26. doi:10.1136/bmj.m1328
  110. Subbaswamy A, Adams R, Saria S. Evaluating Model Robustness and Stability to Dataset Shift. 2020;130. http://arxiv.org/abs/2010.15100. Accessed February 28, 2022.
  111. McLennan S, Fiske A, Celi LA, et al. An embedded ethics approach for AI development. Nat Mach Intell. 2020;2(9):488-490. doi:10.1038/s42256-020-0214-1
  112. Tatman R. Gender and Dialect Bias in YouTube’s Automatic Captions. In: EACL 2017 - Ethics in Natural Language Processing, Proceedings of the 1st ACL Workshop. 2017:53-59. doi:10.18653/v1/w17-1606
  113. Koenecke A, Nam A, Lake E, et al. Racial disparities in automated speech recognition. Proc Natl Acad Sci U S A. 2020;117(14):7684-7689. doi:10.1073/pnas.1915768117
  114. Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28(3):231-237. doi:10.1136/bmjqs-2018-008370
  115. The AI Ethics Initiative - NHS AI Lab programmes - NHS Transformation Directorate. https://www.nhsx.nhs.uk/ai-lab/ai-lab-programmes/ethics/. Accessed March 8, 2022.
  116. Ibrahim H, Liu X, Denniston AK. Reporting guidelines for artificial intelligence in healthcare research. Clin Exp Ophthalmol. 2021;49(5):470-476. doi:10.1111/ceo.13943
  117. McCradden MD, Joshi S, Anderson JA, Mazwi M, Goldenberg A, Shaul RZ. Patient safety and quality improvement: Ethical principles for a regulatory approach to bias in healthcare machine learning. J Am Med Informatics Assoc. 2020;27(12):2024-2027. doi:10.1093/jamia/ocaa085
  118. Kliegr T, Bahník Š, Fürnkranz J. A review of possible effects of cognitive biases on interpretation of rule-based machine learning models. Artif Intell. 2021;295:103458. doi:10.1016/j.artint.2021.103458
  119. Hickman SE, Baxter GC, Gilbert FJ. Adoption of artificial intelligence in breast imaging: evaluation, ethical constraints and limitations. Br J Cancer. 2021;125(1):15-22. doi:10.1038/s41416-021-01333-w
  120. Stewart J, Sprivulis P, Dwivedi G. Artificial intelligence and machine learning in emergency medicine. EMA - Emerg Med Australas. 2018;30(6):870-874. doi:10.1111/1742-6723.13145
  121. Goddard K, Roudsari A, Wyatt JC. Automation bias: A systematic review of frequency, effect mediators, and mitigators. J Am Med Informatics Assoc. 2012;19(1):121-127. doi:10.1136/amiajnl-2011-000089
  122. Braun M, Hummel P, Beck S, Dabrock P. Primer on an ethics of AI-based decision support systems in the clinic. J Med Ethics. 2021;47(12):E3. doi:10.1136/medethics-2019-105860
  123. Dymek C, Kim B, Melton GB, Payne TH, Singh H, Hsiao CJ. Building the evidence-base to reduce electronic health record-related clinician burden. J Am Med Inform Assoc. 2021;28(5):1057-1061. doi:10.1093/jamia/ocaa238
  124. Co Z, Holmgren AJ, Classen DC, et al. The tradeoffs between safety and alert fatigue: Data from a national evaluation of hospital medication-related clinical decision support. J Am Med Informatics Assoc. 2020;27(8):1252-1258. doi:10.1093/jamia/ocaa098
  125. Medlock S, Wyatt JC, Patel VL, Shortliffe EH, Abu-Hanna A. Modeling information flows in clinical decision support: Key insights for enhancing system effectiveness. J Am Med Informatics Assoc. 2016;23(5):1001-1006. doi:10.1093/jamia/ocv177
  126. Burton JW, Stein MK, Jensen TB. A systematic review of algorithm aversion in augmented decision making. J Behav Decis Mak. 2020;33(2):220-239. doi:10.1002/bdm.2155
  127. Young AT, Amara D, Bhattacharya A, Wei ML. Patient and general public attitudes towards clinical artificial intelligence: a mixed methods systematic review. Lancet Digit Heal. 2021;3(9):e599-e611. doi:10.1016/S2589-7500(21)00132-1
  128. De Silva D. Helping people share decision making | The Health Foundation. The Health Foundation. https://www.health.org.uk/publications/helping-people-share-decision-making. Published 2012. Accessed March 7, 2022.
  129. Triberti S, Durosini I, Pravettoni G. A “Third Wheel” Effect in Health Decision Making Involving Artificial Entities: A Psychological Perspective. Front Public Heal. 2020;8(April):1-9. doi:10.3389/fpubh.2020.00117
  130. Building a Smarter Health Care Workforce Using AI. AHA Cent Heal Innov. 2019. https://www.aha.org/system/files/media/file/2019/09/Market_Insights_AI_Workforce_2.pdf. Accessed March 7, 2022.

Page last reviewed: 14 April 2023
Next review due: 14 April 2024